Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Methods to Estimate Acclimatization to the Urban Heat Island Effects on Heat- and Cold-Related Mortality

Ai Milojevic, Ben G. Armstrong, Antonio Gasparrini, Sylvia I. Bohnenstengel, Benjamin Barratt, and Paul Wilkinson

Table of Contents

Table S1. Heat- and cold-related relative risks (RR) at UHI anomalies (UHIa) of +0.5 and -0.5°C and observed interaction rate ratios (IRR) adjusted for socio-economic deprivation and those expected if there were no acclimatization.

Table S2. Heat- and cold-related relative risks (RR) for the least and the most deprived groups and observed interaction rate ratios (IRR) with and without adjustment for UHI anomaly (UHIa).

Table S3. Age-group specific heat- and cold-related relative risks (RR) at UHI anomalies (UHIa) of +0.5 and -0.5°C and observed interaction rate ratios (IRR) with and without adjustment for socio-economic deprivation and IRRs expected if there were no acclimatization.

Table S4. Heat- and cold-related relative risks (RR) at UHI anomalies (UHIa) of ± 0.5 and ± 0.5 °C and observed interaction rate ratios (IRR) and those expected if there were no acclimatization, after adjusted for ambient pollution (O₃ and PM₁₀).

Table S5. Age-group specific heat- and cold-related relative risks (RR) at UHI anomalies (UHIa) of +0.5 and -0.5°C and observed interaction rate ratios (IRR) with and without adjustment for socio-economic deprivation and IRRs expected if there were no acclimatization [with shortened non-summer months, October - April].

Figure S1. The Wald z values for a range of candidate cutpoints defining hot and cold days (approach (i)). The values used in our analyses (6.4 and 22.3°C) are those with maximum z values.

Figure S2. Schematic illustrating how to estimate expected Interaction Rate Ratio (IRR) for heat. The same model as the main model was fit except: excluding an interaction term of temperature and UHI anomalies; and temperature effect modelled as a linear spline (segmented linear model) with knots at the minimum mortality temperature (18.6°C) and the higher cut-point (22.3°C). Expected IRR for heat is estimated as the slope in the spline above the highest knot.

Figure S3. Theoretical patterns of heat-mortality functions in 'Shifted splines' analysis under *no* acclimatization [A], where the curves for UHI anomalies (UHIa) of +0.5 °C (dashed line) and -0.5 °C (dotted line) are laterally displaced by +0.5 °C and -0.5 °C respectively from the London overall curve; and *full* acclimatization [B], where there is no displacement of curves for UHIa of +0.5 °C and -0.5 °C, which are therefore superimposed.

Figure S4. Temperature-mortality functions assuming acclimatization is neutral (γ =0.5) between full (γ =0) and none (γ =1) (left) and deviances of lateral displacement for values of γ in the range -0.5 to 1.5 °C (right) for summer heat (lags 0 to 1 days, June to August) [A] and winter cold (lags 0 to 13 days, September to May) [B], for those aged 75+ years only. Gray shading in the temperature mortality functions represent 95% CI. Deviances were calculated against maximum likelihood estimate (MLE). Likelihood ratio test (LRT) was applied for differences between deviances at γ =1 and γ =0.

Figure S5. Temperature-mortality functions assuming acclimatization is neutral (γ =0.5) between full (γ =0) and none (γ =1) (left) and deviances of lateral displacement for values of γ in the range -0.5 to 1.5 °C (right) for summer heat (lags 0 to 1 days, June to August) [A] and winter cold (lags 0 to 13 days, September to May) [B], after adjusted for O₃ and PM₁₀. Gray shading in the temperature mortality functions represent 95% CI. Deviances were calculated against maximum likelihood estimate (MLE). Likelihood ratio test (LRT) was applied for differences between deviances at γ =1 and γ =0.